Poverty and InequalitySexual and Reproductive HealthFamily, Maternal & Child HealthMethodology

Association Between Maternal Prepregnancy Body Mass Index and Plasma Folate Concentrations With Child Metabolic Health

TitleAssociation Between Maternal Prepregnancy Body Mass Index and Plasma Folate Concentrations With Child Metabolic Health
Publication TypeJournal Article
Year of Publication2016
AuthorsWang, G, Hu, FB, Mistry, KB, Zhang, C, Ren, F, Huo, Y, Paige, D, Bartell, T, Hong, X, Caruso, D, Ji, Z, Chen, Z, Ji, Y, Pearson, C, Ji, H, Zuckerman, B, Cheng, TL, Wang, X
JournalJAMA Pediatr
Date PublishedAug 01
ISBN Number2168-6203
Accession Number27295011

IMPORTANCE: Previous reports have linked maternal prepregnancy obesity with low folate concentrations and child overweight or obesity (OWO) in separate studies. To our knowledge, the role of maternal folate concentrations, alone or in combination with maternal OWO, in child metabolic health has not been examined in a prospective birth cohort. OBJECTIVE: To test the hypotheses that maternal folate concentrations can significantly affect child metabolic health and that sufficient maternal folate concentrations can mitigate prepregnancy obesity-induced child metabolic risk. DESIGN, SETTING, AND PARTICIPANTS: This prospective birth cohort study was conducted at the Boston Medical Center, Boston, Massachusetts. It included 1517 mother-child dyads recruited at birth from 1998 to 2012 and followed up prospectively up to 9 years from 2003 to 2014. MAIN OUTCOMES AND MEASURES: Child body mass index z score calculated according to US reference data, OWO defined as a body mass index in the 85th percentile or greater for age and sex, and metabolic biomarkers (leptin, insulin, and adiponectin). RESULTS: The mean (SD) age was 28.6 (6.5) years for mothers and 6.2 (2.4) years for the children. An L-shaped association between maternal folate concentrations and child OWO was observed: the risk for OWO was higher among those in the lowest quartile (Q1) as compared with those in Q2 through Q4, with an odds ratio of 1.45 (95% CI, 1.13-1.87). The highest risk for child OWO was found among children of obese mothers with low folate concentrations (odds ratio, 3.05; 95% CI, 1.91-4.86) compared with children of normal-weight mothers with folate concentrations in Q2 through Q4 after accounting for multiple covariables. Among children of obese mothers, their risk for OWO was associated with a 43% reduction (odds ratio, 0.57; 95% CI, 0.34-0.95) if their mothers had folate concentrations in Q2 through Q4 compared with Q1. Similar patterns were observed for child metabolic biomarkers. CONCLUSIONS AND RELEVANCE: In this urban low-income prospective birth cohort, we demonstrated an L-shaped association between maternal plasma folate concentrations and child OWO and the benefit of sufficient folate concentrations, especially among obese mothers. The threshold concentration identified in this study exceeded the clinical definition of folate deficiency, which was primarily based on the hematological effect of folate. Our findings underscore the need to establish optimal rather than minimal folate concentrations for preventing adverse metabolic outcomes in the offspring.